If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+4x-81=0
a = 20; b = 4; c = -81;
Δ = b2-4ac
Δ = 42-4·20·(-81)
Δ = 6496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6496}=\sqrt{16*406}=\sqrt{16}*\sqrt{406}=4\sqrt{406}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{406}}{2*20}=\frac{-4-4\sqrt{406}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{406}}{2*20}=\frac{-4+4\sqrt{406}}{40} $
| -3c=-5-8c | | 2v=-9-v | | 4k-5=3* | | 3w+2=11* | | 5+m=-20-2 | | 10x+2=22* | | -18+2y=6 | | -2y=-3y-10 | | 4/4=20/12x | | 18+2y=6 | | 4/5x=x-20 | | (3y+8)=(5y+2) | | 2(5k5)=20 | | f(×)=3×-5 | | 3(v+3)-7v=5 | | (4x+5)=(6x-11) | | -6(3x-9)+4=18x+58 | | 16+2y=6 | | 7+6y=15 | | 80/x=10/9 | | -9-6w=-5w | | 5z+1/5=6z+3/5 | | 32x-1=4x-2-3x-6 | | 11+2y=6 | | -9-6w=-5 | | 32x-1=4-2-3x-6 | | 3b−14=4 | | 9d=10d+10 | | -.03q^2+1.2q=6 | | m3− 3= 1 | | 4(3-2x)/7=1 | | x-55+x-15+x+10=180 |